Fake or True? How People Spread and Verify Rumors Online

НАСТОЯЩИЙ МАТЕРИАЛ (ИНФОРМАЦИЯ) ПРОИЗВЕДЕН,РАСПРОСТРАНЕН И (ИЛИ) НАПРАВЛЕН ИНОСТРАННЫМ АГЕНТОМ АРХИПОВОЙ АЛЕКСАНДРОЙ СЕРГЕЕВНОЙ ЛИБО КАСАЕТСЯ ДЕЯТЕЛЬНОСТИ ИНОСТРАННОГО АГЕНТА АРХИПОВОЙ АЛЕКСАНДРЫ СЕРГЕЕВНЫ

Authors

DOI:

https://doi.org/10.14515/monitoring.2023.4.2387

Keywords:

COVID-19, infodemic, coronavirus, rumors, conspirology, social networks, socail media, natural language processing techniques

Abstract

The article continues the study of the Russian infodemic launched by the authors in January 2020. Its goal is to identify the principles by which Internet users interact with coronavirus rumors on social networks and in search queries. For this, the authors collected a database of infodemic narratives in social networks (6.2 million reposts) and studied the behavioral strategies of users in queries to search engines. The study showed, that although conspiracy narratives remain the most popular among Russian users, they are worried about completely different texts considering everyday risks related to the right to control the body: possible routes of infection, restrictive measures by the authorities, traditional medicines for coronavirus, etc. It was these messages that search engine users sought to check by adding operators of doubt and clarification (“true or false”) to the query. At the same time, users were ready to implement some infodemic narratives in practice, which is confirmed by adding an action operator to them — “how to cook” and “where to buy”. Analyzing such requests, the authors found that the group of the most dangerous infodemic narratives includes a) texts that can provoke uncontrolled intake of pharmaceutical drugs, and b) texts that set out conspiracy plots and quasi-medical ideas about the dangers of vaccination, encouraging people to refuse it.

Acknowledgements. The authors of the article express their deep gratitude to Tonya Samsonova, CEO and founder of Durer.ai, founder of TheQuestion.ru, head of Yandex.Q (2019—2021) for organizing access to data and the opportunity to tackle this topic. N. Petrov and D. Radchenko prepared the article in the framework of a research grant funded by the Ministry of Science and Higher Education of the Russian Federation (grant ID: 075-15-2022-326).

Author Biographies

Alexandra S. Arkhipova, Graduate School of Social Sciences

  • Graduate School of Social Sciences, Paris, France
    • Cand. Sci. (Philology), Visiting Scholar at the Social Anthropology Laboratories

Daria А. Radchenko, Russian Presidential Academy of National Economy and Public Administration (RANEPA)

  • Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia
    • Cand. Sci. (Cultural Studies), Senior Researcher at the Laboratory for Theoretical Folklore Studies

Sergey V. Bondarkov, European University at Saint Petersburg

  • European University at Saint Petersburg, Saint Petersburg, Russia
    • Junior researcher at the Institute for the Rule of Law (IRL)

Maria V. Gavrilova, Russian Presidential Academy of National Economy and Public Administration (RANEPA)

  • Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia
    • Cand. Sci. (Philology), Senior Researcher at the Laboratory of Theoretical Folklore Studies,
  • Russian State University for the Humanities, Moscow, Russia
    • Researcher at Center for Typology and Semiotics of Folklore

Igor V. Loshchits

  • Moscow, Russia
    • Cand. Sci. (Philosophy), independent data journalist,

Nikita V. Petrov, Russian Presidential Academy of National Economy and Public Administration (RANEPA)

  • Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia
    • Cand. Sci. (Philology), Head of the Laboratory for Theoretical Folklore Studies
  • Russian State University for the Humanities, Moscow, Russia

    • Associate Professor at the Center of Typological and Semiotics Folklore Studies
  • Moscow Higher School of Social and Economic Sciences, Moscow, Russia
    • Associate Professor at the Faculty of Humanities
  • European University at Saint Petersburg, Saint Petersburg, Russia
    • Senior Research Fellow at the Center for the Anthropology of Religion

Boris S. Peigin, Russian Presidential Academy of National Economy and Public Administration (RANEPA)

  • Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia
    • Researcher at the Laboratory for Theoretical Folklore Studies, School for Advanced Studies in Humanities

 

References

Архипова А.С.*, Радченко Д.А., Козлова И.В., Пейгин Б.С., Гаврилова М.В., Петров Н.В. Пути российской инфодемии: от WhatsApp до следственного комитета // Мониторинг общественного мнения: экономические и социальные перемены. 2020. № 6. С. 231—265. https://doi.org/10.14515/monitoring.2020.6.1778.

Arkhipova A.S*., Radchenko D.А., Kozlova I.V., Peigin B.S., Gavrilova M.V., Petrov N.V. (2020) Specifics of Infodemic in Russia: From WhatsApp to the Investigative Committee. Monitoring of Public Opinion: Economic and Social Changes. No. 6. P. 231—265. https://doi.org/10.14515/monitoring.2020.6.1778. (In Russ.)

Василькова В.В., Легостаева Н.И. Социальные боты в компьютерной пропаганде: серфинг на информационной волне коронавируса // Мониторинг общественного мнения: экономические и социальные перемены. 2020. № 6. С. 329—356. https://doi.org/10.14515/monitoring.2020.6.1762.

Vasilkova V.V., Legostaeva N.I. (2020) Social Bots in Computational Propaganda: Surfing the Coronavirus Information Wave. Monitoring of Public Opinion: Economic and Social Changes. No. 6. P. 329—356. https://doi.org/10.14515/monitoring.2020.6.1762. (In Russ.)

Гаврилова М.В. Водка, сода и чеснок: «народные» лекарства против страхов. Фольклор и антропология города. 2020. Т. III. № 1—2. С. 224—260. URL: https://ufajournal.ranepa.ru/upload/iblock/44b/%D0%9C%D0%B0%D1%80%D0%B8%D1%8F%20%D0%93%D0%B0%D0%B2%D1%80%D0%B8%D0%BB%D0%BE%D0%B2%D0%B0%201.pdf (дата обращения: 20.08.2023).

Gavrilova, M.V. (2020). Vodka, Soda and Garlic: “Folk” Medicines Against Fears. Urban Folklore and Anthropology. Vol. III. No. 1—2. P. 224—260. URL: https://ufajournal.ranepa.ru/upload/iblock/44b/%D0%9C%D0%B0%D1%80%D0%B8%D1%8F%20%D0%93%D0%B0%D0%B2%D1%80%D0%B8%D0%BB%D0%BE%D0%B2%D0%B0%201.pdf accessed: 20.08.2023). (In Russ.)

Ahmed W., Vidal-Alaball J., Downing J., López Seguí F. (2020) COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data. Journal of Medical Internet Research. Vol. 22. No. 5. e19458. https://doi.org/10.2196/19458.

Bastani, P., Bahrami, M. A. (2020) COVID-19 Related Misinformation on Social Media: A Qualitative Study from Iran. Journal of Medical Internet Research. Advance Online Publication. https://doi.org/10.2196/18932.

Breslin S.D., Enggaard T.R., Blok F., Gårdhus T., Pedersen M.A. (2020) How We Tweet About Coronavirus, and Why: A Computational Anthropological Mapping of Political Attention on Danish Twitter during the COVID-19 Pandemic. Somatosphere. URL: http://somatosphere.net/forumpost/covid19-danish-twitter-computational-map/ (accessed: 18.06.2021).

Bruns, A., Harrington, S., Hurcombe, E. (2020). “Corona? 5G? Or Both?”: The Dynamics of COVID-19/5G Conspiracy Theories on Facebook. Media International Australia. Vol. 177. No. 1. P. 12—29. https://doi.org/10.1177/1329878X20946113.

Cinelli M., Quattrociocchi W., Galeazzi A., Valensise C.M., Brugnoli E., Schmidt A.L., Zola P., Zollo F., Scala A. (2020) The COVID¬-19 Social Media Infodemic. Scientific Reports. Vol. 10. No. 1. https://doi.org/10.1038/s41598¬020¬73510¬5.

Del Vicario M. Vivaldo G., Bessi A., Zollo F., Scala A., Caldarelli G., Quattrociocchi W. (2016). Echo Chambers: Emotional Contagion and Group Polarization on Facebook. Scientific Reports. Vol. 6. No. 1. Art. 37825. https://doi.org/10.1038/srep37825.

Eysenbach G. (2009) Infodemiology and Infoveillance: Framework for an Emerging Set of Public Health Informatics Methods to Analyze Search, Communication and Publication Behavior on the Internet. Journal of Medical Internet Research. Vol. 11. No. 1. Art. e11 https://doi.org/10.2196/jmir.1157.

Gamma A., Schleifer R., Weinmann W., Buadze A., Liebrenz M. (2016) Could Google Trends Be Used to Predict Methamphetamine-Related Crime? An Analysis of Search Volume Data in Switzerland, Germany, and Austria. PLOS ONE. Vol. 11. No. 11. Art. e0166566. https://doi.org/10.1371/journal.pone.0166566.

Germani F., Biller-Andorno N. (2021) The Anti-vaccination Infodemic on Social Media: A Behavioral Analysis. PLOS ONE. Vol. 16. No. 3. Art. e0247642. https://doi.org/10.1371/journal.pone.0247642.

Hou, Z., Du F., Jiang H., Zhou X., Lin L. (2020). Assessment of Public Attention, Risk Perception, Emotional and Behavioural Responses to the COVID-19 Outbreak: Social Media Surveillance in China. MedRxiv. 2020.03.14.20035956. https://doi.org/10.1101/2020.03.14.20035956.

Martel C., Pennycook G., Rand D. G. (2020) Reliance on Emotion Promotes Belief in Fake News. PsyArXiv. https://doi.org/10.31234/osf.io/a2ydw.

Pennycook G., McPhetres J., Zhang Y., Lu J.G., Rand D.G. (2020). Fighting COVID-19 Misinformation on Social Media: Experimental Evidence for a Scalable Accuracy-Nudge Intervention. Psychological Science. Vol. 31. No. 7. P. 770—780. https://doi.org/10.1177/0956797620939054.

Platonov K., Svetlov K. (2020) Conspiracy Theories Dissemination on SNS Vkontakte: COVID-19 Case. In: Chugunov A., Khodachek I., Misnikov Y., Trutnev D. (eds.) Electronic Governance and Open Society: Challenges in Eurasia. Cham: Springer. P. 322—335. https://doi.org/10.1007/978-3-030-67238-6_23.

Preis T., Moat H., Stanley H. (2013) Quantifying Trading Behavior in Financial Markets Using Google Trends. Scientific Reports. Vol. 3. Art. 1684. https://doi.org/10.1038/srep01684.

Prooijen van. J.¬W. (2018) Empowerment as a Tool to Reduce Belief in Conspiracy Theories. In: UscinskiJ. E. (ed.) Conspiracy Theories and the People Who Believe Them.Oxford: Oxford University Press. P. 432–442. https://doi.org/10.1093/oso/9780190844073.003.0030.

Stephens-Davidowitz S. (2014) The Cost of Racial Animus on a Black Candidate: Evidence Using Google Search Data. Journal of Public Economics. Vol. 118. P. 26—40. https://doi.org/10.1016/j.jpubeco.2014.04.010.

Sullivan D., Landau M. J., Rothschild Z. K. (2010) An Existential Function of Enemyship: Evidence That People Attribute Influence to Personal and Political Enemies to Compensate for Threats to Control. Journal of Personality and Social Psychology. Vol. 98. No. 3. P. 434–449. https://doi.org/10.1037/a0017457.

Swami V., Furnham A., Smyth N., Weis L., Ley A., Clow A. (2016) Putting the Stress on Conspiracy Theories: Examing Associations between Psychosocial Stress, Anxiety, and Belief in Conspiracy Theories. Personality and Individual Differences. Vol. 99. P. 72–76. https://doi.org/10.1016/j.paid.2016.04.084.

Telfer S., Woodburn J. (2015) Let Me Google That for You: A Time Series Analysis of Seasonality in Internet Search Trends for Terms Related to Foot and Ankle Pain. Journal of Foot and Ankle Research. Vol. 8. Art. 27. https://doi.org/10.1186/s13047-015-0074-9.

Verma M., Kishore K., Kumar M., Sondh A. R., Aggarwal G., Kathirvel S. (2018). Google Search Trends Predicting Disease Outbreaks: An Analysis from India. Healthcare Informatics Research. Vol. 24. No. 4. P. 300—308. https://doi.org/10.4258/hir.2018.24.4.300.

Wang H., Li Y., Hutch M., Naidech A., Luo Y. (2021) Using Tweets to Understand How COVID-19—Related Health Beliefs Are Affected in the Age of Social Media: Twitter Data Analysis Study. Journal of Medical Internet Research. Vol. 23. No. 2. Art. e26302. https://doi.org/10.2196/26302.

Yang S., Santillana M., Kou S. C. (2015) Accurate Influenza Epidemics Estimation Via ARGO. Proceedings of the National Academy of Sciences. Vol. 112. No. 47. P. 14473—14478. https://doi.org/10.1073/pnas.1515373112.

Zhao Z., Zhao Z., Sano Y., Levy O., Takayasu H., Takayasu M., Li D., Wu J, Havlin S. (2020) Fake News Propagates Differently from Real News Even at Early Stages of Spreading. EPJ Data Science. Vol. 9. Art.7. https://doi.org/10.1140/epjds/s13688-020-00224-z.

* 26.05.2023 внесена в реестр иностранных агентов.

Published

2023-09-15

How to Cite

Arkhipova, A. S. ., Radchenko D. А. ., Bondarkov, S. V. ., Gavrilova, M. V. ., Loshchits, I. V. ., Petrov, N. V. ., & Peigin, B. S. . (2023). Fake or True? How People Spread and Verify Rumors Online: НАСТОЯЩИЙ МАТЕРИАЛ (ИНФОРМАЦИЯ) ПРОИЗВЕДЕН,РАСПРОСТРАНЕН И (ИЛИ) НАПРАВЛЕН ИНОСТРАННЫМ АГЕНТОМ АРХИПОВОЙ АЛЕКСАНДРОЙ СЕРГЕЕВНОЙ ЛИБО КАСАЕТСЯ ДЕЯТЕЛЬНОСТИ ИНОСТРАННОГО АГЕНТА АРХИПОВОЙ АЛЕКСАНДРЫ СЕРГЕЕВНЫ . Monitoring of Public Opinion: Economic and Social Changes, (4). https://doi.org/10.14515/monitoring.2023.4.2387

Issue

Section

SOCIOLOGY OF COMMUNICATIONS

Most read articles by the same author(s)