Имеет ли метод индикаторной переменной преимущества перед анализом полных наблюдений при обработке пропусков в категориальных регрессорах?
DOI:
https://doi.org/10.14515/monitoring.2021.4.940Ключевые слова:
категориальные данные, пропуски в данных, случайные пропуски, неслучайные пропуски, анализ полных наблюдений, метод индикаторной переменной, регрессионный анализ, статистический эксперимент, метод Монте-Карло, симуляция данных, смещение, coverageАннотация
Если в категориальном регрессоре есть пропущенные значения, то что лучше применить: анализ полных наблюдений или метод индикаторной переменной? Суть первого подхода состоит в исключении из анализа (в нашем случае — линейного регрессионного) наблюдений, содержащих пропуски хотя бы по одной из изучаемых переменных. Этот подход применяется по умолчанию во многих популярных приложениях, и, вопреки сложившимся представлениям о его ограниченности, все больше исследований подтверждают его универсальность — даже в случае неслучайных пропусков. Метод индикаторной переменной, при котором пропущенные значения заменяются на валидные, а в пару исходной переменной создается дополнительная индикаторная, выступает более новой альтернативой, которая, в отличие от первого подхода, позволяет использовать информацию из всех наблюдений и при этом, гипотетически, также не приводит к искажению изучаемых статистических параметров. Посредством статистического эксперимента на симулированных данных, контролируя механизм порождения пропусков, их долю и спецификацию регрессионной модели, мы сравниваем полученные на основе каждого из подходов статистические оценки регрессионных коэффициентов на предмет их искажений: смещения и неэффективности. Согласно результатам, оба подхода не приводят к заметному смещению, однако метод индикаторной переменной приводит к менее эффективной оценке.
Благодарность. Публикация подготовлена в ходе проведения исследования «Комплексное сравнение методов обработки пропущенных данных в социологических исследованиях» (№ 20-04-016) в рамках Программы «Научный фонд Национального исследовательского университета «Высшая школа экономики» (НИУ ВШЭ)» в 2020 г. и в рамках государственной поддержки ведущих университетов Российской Федерации «5–100».
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2021 Мониторинг общественного мнения: экономические и социальные перемены
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.