Forewarned is Forearmed? Anti-Vaccine Content and User Perception of Warning Labels
DOI:
https://doi.org/10.14515/monitoring.2025.6.2917Keywords:
warning messages, vaccination, mixed-methods research, human-computer interaction, internet research, social mediaAbstract
The proliferation of misinformation online has compelled social media platforms to develop effective countermeasures. This study investigates user perceptions of different interface warning labels, using anti-vaccine content as an example. The research focuses on the social network «VKontakte» (VK), a major platform in the Russian-speaking internet segment that has previously experimented with such labels. We empirically compare four warning formats: two commonly used ones (a content-blocking interstitial pop-up and a permanent banner) and two experimental types (a refutational message and a combined format informed by user preferences). A mixed-methods approach was employed, involving a research cycle of semi-structured interviews (N = 4), a preference test (N = 169), and an online experiment (N = 309). The findings reveal a statistically significant user preference for messages that provide a structured refutation of false claims (p-value = 0.026). However, none of the tested warning formats resulted in a significant reduction in users' willingness to engage with the labeled post (i.e., liking, sharing, commenting). Based on these results, the study provides practical design recommendations for interface elements to counter misinformation, targeting researchers, designers, and platform developers.
References
Дудина В. И., Сайфулина В. О. «Почитала, еще меньше вакцинироваться захотелось»: онлайн-дискурс вакцинной нерешительности // Мониторинг общественного мнения: экономические и социальные перемены. 2023. No. 1. C. 279—298. https://doi.org/10.14515/monitoring.2023.1.2344.
Dudina V. I., Saifulina V. O. (2023) «I Read It, I Wanted to Get Vaccinated Even Less»: An Online Discourse of Vaccine Hesitancy. Monitoring of Public Opinion: Economic and Social Changes. No. 1. P. 279—298. https://doi.org/10.14515/monitoring.2023.1.2344. (In Russ.)
Akhawe D., Felt A. P. (2013) Alice in Warningland: A Large-Scale Field Study of Browser Security Warning Effectiveness. In: Proceedings of the 22nd USENIX Conference on Security. P. 257—272. URL: https://dl.acm.org/doi/10.5555/2534766.2534789 (accessed: 17.02.2025).
Allen J., Watts D. J., Rand D. G. (2024) Quantifying the Impact of Misinformation and Vaccine-Skeptical Content on Facebook*. Science. Vol. 384. No. 6699. https://doi.org/10.1126/science.adk3451.
Benoit S. L., Mauldin R. F. (2021) The “Anti-Vax” Movement: A Quantitative Report on Vaccine Beliefs and Knowledge Across Social Media. BMC Public Health. Vol. 21. No. 1. https://doi.org/10.1186/s12889-021-12114-8.
Clayton K., Blair S., Busam J. A., Forstner S., Glance J., Green G., Kawata A., Kovvuri A., Martin J., Morgan E., Sandhu M., Sang R., Scholz-Bright R., Welch A. T., Wolff A. G., Zhou A., & Nyhan B. (2020) Real Solutions for Fake News? Measuring the Effectiveness of General Warnings and Fact-Check Tags in Reducing Belief in False Stories on Social Media. Political Behavior. Vol. 42. No. 4. P. 1073—1095. https://doi.org/10.1007/s11109-019-09533-0.
Epstein Z., Foppiani N., Hilgard S., Sharma S., Glassman E., Rand D. (2022) Do Explanations Increase the Effectiveness of AI-Crowd Generated Fake News Warnings? In: Budak C., Cha M., Quercia D. (eds.) Proceedings of the International AAAI Conference on Web and Social Media. Vol. 16. P. 183—193. https://doi.org/10.1609/icwsm.v16i1.19283.
Fritz C. O., Morris P. E., Richler J. J. (2012) Effect Size Estimates: Current Use, Calculations, and Interpretation. Journal of Experimental Psychology: General. Vol. 141. No. 1. P. 2—18. https://doi.org/10.1037/a0024338.
Gantiva C., Sotaquirá M., Marroquín M., Carné C., Parada L., & Muñoz M. A. (2019) Size Matters in the Case of Graphic Health Warnings: Evidence from Physiological Measures. Addictive Behaviors. Vol. 92. P. 64—68. https://doi.org/10.1016/j.addbeh.2018.12.003.
Guo C., Guo Z., Zheng N., Guo C. (2024) All Warnings Are Not Equal: A User-Centered Approach to Comparing General and Specific Contextual Warnings Against Misinformation. In: Bui T. (ed.) Proceedings of the 57th Hawaii International Conference on System Sciences. P. 2330—2339. URL: https://aisel.aisnet.org/hicss-57/dsm/critical_and_ethical_studies/3 (accessed: 12.01.2025).
Hassan A., Barber S. J. (2021) The Effects of Repetition Frequency on the Illusory Truth Effect. Cognitive Research: Principles and Implications. Vol. 6. No. 1. https://doi.org/10.1186/s41235-021-00301-5.
Johnson H. M., Seifert C. M. (1994) Sources of the Continued Influence Effect: When Misinformation in Memory Affects Later Inferences. Journal of Experimental Psychology: Learning, Memory, and Cognition. Vol. 20. No. 6. P. 1420—1436. https://doi.org/10.1037/0278-7393.20.6.1420.
Kaiser B., Wei J., Lucherini E., Lee K., Matias J. N., Mayer J. (2021) Adapting Security Warnings to Counter Online Disinformation. In: 30th USENIX Security Symposium (USENIX Security 21). P. 1163—1180. URL: https://www.usenix.org/conference/usenixsecurity21/presentation/kaiser (accessed: 29.12.2024).
Koch T. K., Frischlich L., Lermer E. (2023) Effects of Fact-Checking Warning Labels and Social Endorsement Cues on Climate Change Fake News Credibility and Engagement on Social Media. Journal of Applied Social Psychology. Vol. 53. No. 6. P. 495—507. https://doi.org/10.1111/jasp.12959.
König L. M. (2023) Debunking Nutrition Myths: An Experimental Test of the “Truth Sandwich” Text Format. British Journal of Health Psychology. Vol. 28. No. 4. P. 1000—1010. https://doi.org/10.1111/bjhp.12665.
Konstantinou L., Caraban A., Karapanos E. (2019) Combating Misinformation Through Nudging. In: Lamas D., Loizides F., Nacke L., Petrie H., Winckler M., Zaphiris P. (eds.) Human-Computer Interaction — INTERACT 2019. Cham: Springer. Vol. 11749. https://doi.org/10.1007/978-3-030-29390-1_51.
Kotz J., Giese H., König L. M. (2023) How to Debunk Misinformation? An Experimental Online Study Investigating Text Structures and Headline Formats. British Journal of Health Psychology. Vol. 28. No. 4. P. 1097—1112. https://doi.org/10.1111/bjhp.12670.
Lewandowsky S., Ecker U. K., Seifert C. M., Schwarz N., Cook J. (2012) Misinformation and Its Correction: Continued Influence and Successful Debiasing. Psychological Science in the Public Interest. Vol. 13. No. 3. P. 106—131. https://doi.org/10.1177/1529100612451018.
Martel C., Rand D. G. (2023) Misinformation Warning Labels Are Widely Effective: A Review of Warning Effects and Their Moderating Features. Current Opinion in Psychology. Vol. 54. Art. 101710. https://doi.org/10.1016/j.copsyc.2023.101710.
Mena P. (2020) Cleaning Up Social Media: The Effect of Warning Labels on Likelihood of Sharing False News on Facebook*. Policy & Internet. Vol. 12. No. 2. P. 165—183. https://doi.org/10.1002/poi3.214.
Nassetta J., Gross K. (2020) State Media Warning Labels Can Counteract the Effects of Foreign Misinformation. Harvard Kennedy School Misinformation Review. Vol. 1. https://doi.org/10.37016/mr-2020-45.
Pennycook G., Bear A., Collins E. T., Rand D. G. (2020) The Implied Truth Effect: Attaching Warnings to a Subset of Fake News Headlines Increases Perceived Accuracy of Headlines Without Warnings. Management Science. Vol. 66. No. 11. P. 4944—4957. https://doi.org/10.1287/mnsc.2019.3478.
Petrov I. (2022) Anti-vaccination Movement on VK: Information Exchange and Public Concern. In: Alexandrov D.A., Boukhanovsky A.V., Chugunov A.V., Kabanov Y., Koltsova O., Musabirov I. (eds.) Digital Transformation and Global Society. Cham: Springer. P. 108—121. https://doi.org/10.1007/978-3-030-93715-7_8.
Pluviano S., Watt C., Della Sala S. (2017) Misinformation Lingers in Memory: Failure of Three Pro-vaccination Strategies. PloS ONE. Vol. 12. No. 7. https://doi.org/10.1371/journal.pone.0181640.
Porter E., Wood T. J. (2022) Political Misinformation and Factual Corrections on the Facebook* News Feed: Experimental Evidence. The Journal of Politics. Vol. 84. No. 3. P. 1812—1817. https://doi.org/10.1086/719271.
Sharevski F., Alsaadi R., Jachim P., Pieroni E. (2022) Misinformation Warnings: Twitter’s Soft Moderation Effects on COVID-19 Vaccine Belief Echoes. Computers & Security. Vol. 114. https://doi.org/10.1016/j.cose.2021.102577.
Silic M. (2016) Understanding Colour Impact on Warning Messages: Evidence from Us and India. In: Kaye J., & Druin A. (eds.) Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. P. 2954—2960. https://doi.org/10.1145/2851581.2892276.
Sullivan G. M., Artino A. R. (2013) Analyzing and Interpreting Data from Likert-Type Scales. Journal of Graduate Medical Education. Vol. 5. No. 4. P. 541—542. https://doi.org/10.4300/JGME-5-4-18.
Swire-Thompson B., DeGutis J., Lazer D. (2020) Searching for the Backfire Effect: Measurement and Design Considerations. Journal of Applied Research in Memory and Cognition. Vol. 9. No. 3. P. 286—299. https://doi.org/10.1016/j.jarmac.2020.06.006.
Tulin M., Hameleers M., de Vreese C., Opgenhaffen M., Wouters F. (2024) Beyond Belief Correction: Effects of the Truth Sandwich on Perceptions of Fact-checkers and Verification Intentions. Journalism Practice. P. 1—20. https://doi.org/10.1080/17512786.2024.2311311.
Xie J., Yamashita M., Cai Z., Xiong A. (2022) A User Study on the Feasibility of Topic-aware Misinformation Warning on Social Media. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Vol. 66. No. 1. P. 621—625. https://doi.org/10.1177/1071181322661252.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Игорь Дмитриевич Петров

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




