Artificial Intelligence Is What You Can Do. Book Review: Howard J., Gugger S. (2022) Deep Learning with fastai and PyЕorch: Minimum Formulas, Minimum Code, Maximum Efficiency. St. Petersburg: Piter

Authors

DOI:

https://doi.org/10.14515/monitoring.2024.5.2550

Keywords:

artificial intelligence, deep learning, neural networks, data processing, modelling, interpretability of models, ethics of artificial intelligence

Abstract

The book by developer and business analyst Jeremy Howard and data science research engineer Sylvain Gugger, published in 2020 and translated into Russian in 2022, is an attempt to prove to the reader that he or she, regardless of education and profession, is capable of independently accessing one of the iconic technologies of the 21st century ― artificial intelligence (AI) ― and creating products using it to incorporate the latter into their activities. The work provides a thorough analysis of AI trends, reviews the technology stack necessary for effective work in this field, and describes the stages of developing a project with artificial intelligence, from problem formulation and data collection to creating a graphical user interface and placing the application on the server, reveals the most acute problems associated with the increasing use of AI in companies, and updates the thesis on the need for an “ethical” approach when working with artificial intelligence. The book’s central part is devoted to explaining programs implementing one AI mechanism or another (or rather, one neural network architecture or another), as well as the stages and principles of writing a code using which one of the predetermined practical problems is solved. However, for the reader who does not want to immerse himself in programming, the work offers materials about the theory of artificial intelligence, the methods of obtaining maximum usefulness from AI in case you are a customer and not a project executor, about the rules of preventing negative consequences of including artificial intelligence in the firm’s activity, following which is required not only from developers but also from the whole team working on the product, including the directors. Thus, the reviewed book may be helpful for representatives of an unlimited range of professions, positions, and interests.

Author Biography

Iliya I. Bukhansky, Moscow State University

  • Moscow State University, Mosocw, Russia

    • Bachelor Student in Sociology

  • Russian Public Opinion Research Center (VCIOM), Moscow, Russia
    • Research Manager

References

Ивлев Д. В. Искусственный интеллект и проблемы этики // Право и практика. 2023. № 4. С. 263—267.

Ivlev D. V. (2023) Artificial Intelligence and Ethical Issues. Law and Practice. No. 4. P. 263—267. (In Russ.)

Котов Д. А. Алгоритмы искусственного интеллекта в прикладных социологических исследованиях // СоциоДиггер. 2023. Т. 4. № 7-8. URL: https://sociodigger.ru/articles/articles-page/algoritmy-iskusstvennogo-intellekta-v-prikladnykh-sociologicheskikh-issledovanijakh (дата обращения: 12.10.2024).

Kotov D. A. (2023) Artificial Intelligence Algorithms in Applied Sociological Research. SocioDigger. Vol. 4. No. 7-8. URL: https://sociodigger.ru/articles/articles-page/algoritmy-iskusstvennogo-intellekta-v-prikladnykh-sociologicheskikh-issledovanijakh (accessed: 12.10.2024). (In Russ.)

Макаров К. С., Чертков С. Н., Лукьянчиков К. В. Концептуальная модель системы разметки графических данных для решения задач компьютерного зрения с использованием технологий машинного обучения // Auditorium. Электронный научный журнал Курского государственного университета. 2023. № 2. URL: https://api-mag.kursksu.ru/api/v1/get_pdf/4939/ (дата обращения: 20.06.2024).

Makarov K. S., Chertkov S. N., Lukyanchikov K. V. (2023) Conceptual Model of a Graphic Data Markup System for Solving Computer Vision Problems Using Machine Learning Technologies. Auditorium. Electronic Scientific Journal of Kursk State University. No. 2. URL: https://api-mag.kursksu.ru/api/v1/get_pdf/4939/ (accessed: 20.06.2024). (In Russ.)

Матвеева А. А., Махныткина О. В. Метод аугментации текстовых данных с сохранением стиля речи и лексики персоны // Научно-технический вестник информационных технологий, механики и оптики. 2023. Т. 23. № 4. С. 743—749. https://doi.org/10.17586/2226-1494-2023-23-4-743-749.

Matveeva A. A., Makhnytkina O. V. (2023) Text Augmentation Preserving Persona Speech Style and Vocabulary. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. Vol. 23. No. 4. P. 743—749. https://doi.org/10.17586/2226-1494-2023-23-4-743-749. (In Russ.)

Намиот Д. Е., Ильюшин Е. А. Мониторинг сдвига данных в моделях машинного обучения // International Journal of Open Information Technologies. 2022. Т. 10. № 12. С. 84—93.

Namiot D. E., Ilyushin E. A. (2022) Data Shift Monitoring in Machine Learning Models. International Journal of Open Information Technologies. Vol. 10. No. 12. P. 84—93. (In Russ.)

Резаев А. В., Трегубова Н. Д. От социологии к новой социальной аналитике: кризис социологии и проблема искусственного интеллекта // Социологическое обозрение. 2021. Т. 20. № 3. С. 280—301.

Rezaev A. V., Tregubova N. D. (2021) Sociology on the Way to New Social Analytics: The Crisis in Sociology and the Problem of Artificial Intelligence. Russian Sociological Review. Vol. 20. No. 3. P. 280—301. (In Russ.)

Семина Т. В., Го В. Воздействие технологий искусственного интеллекта на социальные отношения // Социология. 2022. № 3. С. 173—178.

Semina T.V., Guo W. (2022) The Impact of Artificial Intelligence Technologies on Social Relations. Sociology. No. 3. P. 173—178. (In Russ.)

Ховард Дж., Гуггер С. Глубокое обучение с fastai и PyTorch: минимум формул, минимум кода, максимум эффективности. СПб.: Питер, 2022.

Howard J., Gugger S. (2022) Deep Learning for Coders with fastai and PyTorch: AI Applications Without a PhD. St. Petersburg: Piter. (In Russ.)

Четвериков С. Ф., Арзамасов К. М., Андрейченко А. Е., Новик В. П., Бобровская Т. М., Владзимирский А. В. Подходы к формированию выборки для контроля качества работы систем искусственного интеллекта в медико-биологических исследованиях // Современные технологии в медицине. 2023. Т. 15. № 2. С. 19—27. https://doi.org/10.17691/stm2023.15.2.02.

Chetverikov S. F., Arzamasov K. M., Andreichenko A. E., Novik V. P., Bobrovskaya T. M., Vladzimirsky A. V. (2023) Approaches to Sampling for Quality Control of Artificial Intelligence in Biomedical Research. Sovremennye tehnologii v medicine. Vol. 15. No. 2. P. 19—27. https://doi.org/10.17691/stm2023.15.2.02.

Шляпников В. В. Некоторые проблемы этики искусственного интеллекта // Идеи и идеалы. 2023. Т. 15. № 2—2. С. 365—376. https://doi.org/10.17212/2075-0862-2023-15.2.2-365-376.

Shlyapnikov V. V. (2023) Some Problems with Artificial Intelligence Ethics. Ideas and Ideals. Vol. 15. No. 2—2. P. 365—376. (In Russ.) https://doi.org/10.17212/2075-0862-2023-15.2.2-365-376.

Deng L., Yu D. (2014) Deep learning: Methods and Applications. Foundations and Trends® in Signal Processing. Vol. 7. No. 3—4. P. 197—387. https://doi.org/10.1561/2000000039.

Pan S. J., Yang Q. (2010) A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering. Vol. 22. No. 10. P. 1345—1359. https://doi.org/10.1109/TKDE.2009.191.

Published

2024-11-08

How to Cite

Bukhansky, I. I. (2024). Artificial Intelligence Is What You Can Do. Book Review: Howard J., Gugger S. (2022) Deep Learning with fastai and PyЕorch: Minimum Formulas, Minimum Code, Maximum Efficiency. St. Petersburg: Piter. Monitoring of Public Opinion: Economic and Social Changes, (5). https://doi.org/10.14515/monitoring.2024.5.2550